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@ Conceptual Design of UNO

UNO Detector Conceptual Design

A Water Cherenkov Detector
optimized for:

- Light attenuation length limit
* PMT pressure limit

» Cost (built-in staging)

' Total Vol: 650 kton
" Fid. Vol: 440 kton (20xSuperK)
# of 20" PMTs: 56,000
separation # of 8" PMTs: 14,900
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@ History of UNO

» Proposed in 1999 at NNN99

= Whitepaper , July 2002 presented at Snowmass, signed by
23 institutions, 49 members: proto-collaborators
(22 institutions, 32 members: interest group)

= UNO Narrative for HEPAP 2003 report

= August, 2003: Proto-collaboration evolved to collaboration

= April 2004: The collaboration made up of
40 institutions, 94 members, and 7 countries ( has grown since 2002)

= April 6, 2005 UNO meeting in France followed by NNNO5
= EOI/R&D proposal 2005

Visit UNO website at http://nngroup.physics.sunysb.edu/uno/
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@ Physics Menu

U Lepton number violation = neutrino oscillation
» Very long baseline neutrino oscillation ( see Fermilab/BNL study report)

- Precise measurement of 6,, and [AmZ,,|
- Measurement of 6,, and possibly 6.5
- Determine the sign of Am2,;to find out hierarchy

= Atmospheric neutrinos (see Kajita@NOONO04, Shiozawa@TAUP2004)
- Precise measurement of 6,, and Am?,,
- Possible measurement of 0,

O Baryon number violation

= Nucleon decays such as p->e*n® and vK* (and others in a long list)

= n — n oscillation (JAB|=2 process)

= B-L violating nucleon decay such as p->en*n*

U Astrophysics

= Neutrinos from supernovae as far as local group galaxies including M31
» Relic neutrinos from past supernovae
= Solar neutrinos
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@ Very Long Baseline Neutrino Oscillation

4 Very long baseline wideband neutrino beam Oscilltion Nodes for Am’ = 0.0025 eV*

T

= Use more than one oscillation nodes
= Avoid energy range where Fermi motion dominates

= Use different behaviors of v energy spectra at
different energy ranges
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@ Very Long Baseline Neutrino Oscillation

O First full simulation by Stony Brook group (See NNNO6 Proceedings)
For detalls also: http://nngroup.physics.sunysb.edu/uno/publications.shtml.
® Use of SK atmospheric neutrino MC (40% PMT coverage)

= Standard SK-I analysis package + special =° finder (POLTit)
= Re-weight with the wideband beam spectra

= Normalize with QE events: 12,000 events for v, , 84 events for beam
v for 0.5 Mt F.V. with 5 years of running, 2,540 (1,480) km baseline

— BNL to Homestake /
2500 kt eMWe10’ sec
with BNL 30 GeV AGS Fermilab to Henderson

© Oscillation parameters used:
" Am?, =7.3 x 10> eV?, Am*,,=2.5 x 10 %eV?
- sin226ij(12,23,13)20.86/1.0/0.04 0.,=0,+45,+135,-45,-135°

' Y CP
= Osc. prob. including matter effect (by B.Viren)
9/20/07 C. Yanagisawa, B-L Workshop 6



@ Very Long Baseline Neutrino Oscillation

O 719 detection capability of a water Cherenkov (=SK) with POLfit

with w0 finder POLfit
\ DSTaNAArd SK—I witn FoImit

Efficiency

_without = finder POLf
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Opening angle (deg)
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@ Very Long Baseline Neutrino Oscillation

4 v, ->v, oscillation
O v ->v, signal: ve + N -> e + X (invisible)  Single e-like ring events

© Major background sources:
= NC =° production, v, + N -> v, + 70 (->7;5ing) + X (invisible)
" v, contamination in the v beam Single e-like ring events

1 Event selection
= Select single e-like ring events w/o =° finder ( SK cut)
= Turn on w° finder and use its information to remove r° events

A n%background removal
» Using 9 variables that carry information about nature of the e-like ring,
charge distribution, and about the event topology, two likelihood
functions are calculated for two hypotheses, signal or background.
For details: http://nngroup.physics.sunysb.edu/uno/publications.shtml or
NNNO6 Proceedings
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@ Very Long Baseline Neutrino Oscillation

d =% background removal: log [Ih(bkg)/lIh(signal)]=A log likelihood
« Apply a cut on A log likelihood to retain 40% of signal after SK cuts

0 < Erec<0.5 GeV 0.5 < Erec<l1.0 GeV 1.0 < Erec<1.5 GeV

a

Alog likelihood
1.5 < Erec<2.0 GeV| =[2.0<Erec<3.0GeV 3.0 GeV < Erec
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»

Very Long Baseline Neutrino Oscillation

d =% background removal: log [Ih(bkg)/lIh(signal)]=A log likelihood
« Apply a cut on A log likelihood to retain 40% of signal after SK cuts
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»

Very Long Baseline Neutrino Oscillation

d =% background removal: log [Ih(bkg)/lIh(signal)]=A log likelihood

« Apply a cut on A log likelihood to retain 40% of signal after SK cuts

After A log likelihood cut
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@ Proton Decays

O Bench mark proton decay modes
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@ Proton Decay p->e*r’

U Event selection (different from SK cuts)

» 2 or 3 e-like rings with E;; > 30 MeV

* No decay electron

* For 3-ring events:
0.085 <m, <0.185 MeV/c* for SK PMT
0.010< <0.220 for Y4 SK PMT

* 0< y? <6 from kinematical fit:
For 3-ring events with m =m,, mW:mnO

ring
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e P,= |2_|5i|<0.2 GeV/c after the fit
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@ Proton Decay p->e*r’

4 Sensitivity at 90% C.L.

» Central compartment (40% PMT coverage, FV=0.151 Mt)
-Expected background 0.11 ev/yr

S|gnal_0 34
- sensitivity 5.4 x 1034 yr (10 yrs)
9.3 x 1034 yr (20 yrs)
e Side compartment (10% PMT coverage, FV=0.292 Mt
-Expected background 0.39 ev/yr
S|gnal_O 24 . e{' ensmn;(so i3 (:l_ai
- sensitivity 5.0 x 1034 yr (10 yrs) B SN NS N
7.1 x 103 yr (20 yrs) L
o All compartments (FV=0.443 Mt) AN
-Expected background 0.50 ev/yr
S|gnal_0 A

- sensitivity 8.2 x 1034 yr (10 yrs)
1.2 x 1035 yr (20 yrs)
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9/20/07 C. Yanagisawa, B-L Workshop 14



@ Proton Decay p->vK*

O Most promising among 3 standard Super-K analyses (Nakamura NNNOG6)

® 1 1 and 1 decay electron
prompt y tag ® 215 < P, <260 MeV/c
® no proton

® maximize NHIT in the 12 ns sliding
160 @ time window, 7= NHIT, =60

15N’ @\} ﬁ:\

- number of events
i

B R P H
0 20 40 60
Mt

SK-I 1489 days or 92 kton*yr
e =8.6 %, 0.7 exp'd BG, 0 candidate

10

1000 1080 1100 1160 1200
TOF 8 ll:{raﬁecl thme (n=)

From K. Nakamura, NNNO6
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@ Proton Decay p->vK*

U Results from Hyper K study (Nakamura NNNO6)

__ SK-| 100yr/1489d vK
PDK

SK-I SK-IT

(40% photocathode |(19% photocathode
coverage) coverage)

A= sk ClNHTRS skl
NGl 1 =

U are

Ir L—l:L

Efficiency* |8.6% 4.7%

0.008 ev. 0.01 ev.
Background |/kton/year /kton/year

» Photocathode coverage vs. eff.
s 40% -> 20% vs. 8.6% ->4.7%
E for the same background level.

1| NHITy=5 - = |t is not yet known how much the
efficiency will be reduced for the
PMT coverage of 10% -> for future
study.
immImE = A good news is : most of background
events come from misfitted vertex position.

(Shiozawa NNNO02)
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@ Proton Decay p->vK*

O Case for UNO
= Keep the same background rejection power and the same efficiency for

the SK-1 PMT coverage: For SK-1 PMT coverage (K. Nakamura, NNNOG)
SK-I coverage (40%) g = 8.6% 107
aensltlwty for p—- K {130 CL}
Y SK-I coverage (20%) g~ 4.7%

6| ] | HKxEOyr ____________________
Y4 SK-I coverage (10%) assume g, ~2.1%7? | |

)

= UNO with 40%+40% coverage (UNOA40):
F.V.=0.44 Mt

= UNO with 40%+20% coverage (UNOZ20):
F.V.= 0.31 Mt with 40% PMT coverage.

= UNO with 40%+10% coverage (UNO):

F.V.= 0.22 Mt with 40% PMT coverage. ExposuE]
UNO40 10 years
UNOZ20 10 years
UNO 10 years
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@ Proton Decay p->vK* and p->en*n*

J POthtlal Improvement For SK-1 PMT coverage (Shiozawa, NNNO2)
= Major background

- ~6 events/Mtyr from single-ring
u, m, and p events with misfitted
vertex position: Can be improved.

- If we manage to remove these,
then even 3c sensitivity looks good.
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@ Conclusions

O UNO could be the key to advance our knowledge about neutrino:

- Precise measurement of 6,, and Am?,,
- Measurement of 6,, and possibly 6.5
- Determine the sign of Am?2,, to find out hierarchy

See Fermilab/BNL study report : arXiv.0705.4396
Also a detailed study of water Cherenkov at :
http://nngroup.physics.sunysb.edu/UNO/publications or NNNO6 Proceedings

L UNO could be the key to open a door to new era of particle physics
If Nature is kind enough to let us detect nucleon decays.

L UNO could be one of the most cost-effective multi-purpose detectors,
given the rich list of physics to be done.

U More work needed to optimize the UNO design:
PMT coverage, granularity, PMT performance, improvement of software
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Backup Slides
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@ Very Long Baseline Neutrino Oscillation

Q Likelihood analysis using the following 9 variables

= 79 mass (pi0Omass) = A log n°-likelihood (Alog piOlike)
= energy fraction (efrac) = single ring-ness (dlfct)
= C0SO,, = total charge/primary ring energy (poa)

= 10-likelihood (pi0-like) = Cherenkov angle (ange)
= e-likelihood (e-like)

Energy fraction of 2nd ring

40
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Events/0.025
Events/0.04
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@ Very Long Baseline Neutrino Oscillation

a Breakdown of sources of signal and background events (2,540 km)

Interaction O<E_ <1 GeV I<E <2 GeV 2<E_ <3 GeV 3 GeV<E_,
mode .. : : .
Sig Bkgn® Sig Bkgn® Sig Bkgn® Sig Bkgn®

CCQE B82% 7% 69% 1% 28% 0% 50% 0%

1 n° 3% 3% 5% 8% 11% 0% 8% 0%

1 7+ e  22% 1% 45% 0% 30% 0%

19% 0% 3% 1% Yo 18% 13% 0%

0%  68%

I~ 0% 0% 3%

Others )% 3% 1% 10%
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»

Very Long Baseline Neutrino Oscillation

0 Granularity and n° efficiency for same PMT coverage

° efficiency
o o
© ©

o
3

A

© I o
IS 3 o

Y detection efficiency

9/20/07

Expected improvement with UNO?

—+— minimum distance (dmin) to
PMT surface

e OM-10m
15m-20m

©)

A

finer granularity

40 60 80 100 120 140 160 180
Opening angle (deg)

opening angle (deo
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Compared with a smaller detector

= 110 efficiency improves when the min.
distance increases when the opening
of two photons from =0 is smaller
than about 400,

= For smaller = opening angle finer
granularity is needed.

= What PMT coverage needed?
10,20,40% (SK-I and SK-I11I has 40%

coverage) ?

dist>dmin

primary y
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@ Very Long Baseline Neutrino Oscillation

0 Effect of granularity on ©t° background/signal

Fermilab-Henderson (1480 km) EENEGERNECROEEILCN

a dip in signal due to neutrino oscillation effect detector does a better jOb
l dmin>20m

to distinguish the signal from
the =® background at the re-
No cut on dmin constructed energy below 1.2
GeV.
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@ Proton Decay p->e*r’

O Distributions before and after ¥ fit (10 iterations)

p=¢em 3ring 1/1 SK PMT ] 1l b 7

Enrias 158 Entries 158
Kean 1353 Neg 80,4

RS 7284 RYS 5845

0 200 300 400 i 800 1000 120[}_?
m,,. (MeV/e) | :
9

60 80 100 00 00 400 200 400 600 800 1000 1200,

2 . r 1
H(MeVie) my,(MeV/E) Myl MeV/c™)
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Proton Decay p->e*r’

9/20/07
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@ Neutrinos from Supernovae

L New SN explosions from local galaxies (including M31)

Prompt v,
deleptonization
burst

-
(=]
ry

;.Galactic
center
LMC

-
=]
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—_
o
o

Average Energy [MeV] Luminasity [10% erg/sec]

NN

N\

Time [sec] - R R R \‘\\

Livermore numerical model 10 1()2 1()3
ApJ 496 (1998) 216 distance(kpc)
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@ Neutrinos from Supernovae

O What could UNO do if a SN exploded at 10 kpc?

» For a SN at 10 kpc, UNO would detect 130k inverse beta decay events,
4.5k elastic scattering events, 4,500 NC events in the central compartment.

= High statistics might lead to our first observation of the birth of a black hole

= UNO is big enough to observg a supernova explosion even in Andromeda

16 ;
Neutral current events J.F. Beacom et al. PRD63, 73011 (2001)

_A_Il_e_n_eja\rgy range
X m, =18eV
H e

Event rates for SK-III
from a SN at 10 kpc

0.01 0.02
t—t;, [s]
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